Deep Learning Kit

Deep Learning Kit: Interactive ebook and Onramp tutorial

Συμπληρώστε τα στοιχεία σας στη φόρμα δεξιά για το interactive ebook με τίτλο "Deep Learning vs. Machine Learning: Choosing the Best Approach". Αποθηκεύστε το link για να έχετε πρόσβαση όποτε θέλετε.

You have data, hardware, and a goal—everything you need to implement machine learning or deep learning algorithms. But which one should you use?

This interactive ebook takes a user-centric approach to help guide you toward the algorithms you should consider first.

Learn which algorithms are associated with six common tasks, including:

  • Predicting an output based historical data
  • Identifying objects in image, video, and signal data
  • Moving physically or in a simulation

Get the interactive ebook to:

  • See how your data, hardware, interpretability, speed, and accuracy requirements impact which technique you should use.
  • Follow a walkthrough using a convolutional neural network for feature extraction and a support vector machine for classification.
  • Take a quiz to see if you can identify the algorithms used in five real-world use cases from Shell, Battelle, Stanford University, and others.



Επίσης θα μπορέσετε να παρακολουθήσετε online δωρεάν το interactive Onramp tutorial με τίτλο "Deep Learning Onramp". Για την παρακολούθηση δεν απαιτείται να έχετε το MATLAB εγκατεστημένο, καθώς γίνεται χρήση του MATLAB Online μέσω browser (θα χρειαστεί να δημιουργήσετε λογαριασμό στο site της Mathworks με το email σας).

This free, two-hour deep learning tutorial provides an interactive introduction to practical deep learning methods. You will learn to use deep learning techniques in MATLAB® for image recognition. Prerequisites: MATLAB Onramp or basic knowledge of MATLAB


  • Overview of Deep Learning
  • Using Pretrained Networks
  • Managing Collections of Data
  • Performing Transfer Learning


Contact Information
This question is for testing whether you are a human visitor and to prevent automated spam submissions.
Enter the characters shown in the image.